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Abstract

An analysis and numerical results are presented for free transverse vibrations of non-homogeneous orthotropic

rectangular plates of non-uniform thickness and resting on an elastic foundation of Winkler type on the basis of classical

plate theory. The non-homogeneity of the plate material is assumed to arise due to the exponential variation in Young’s

moduli and density along one direction. Following Lévy approach i.e. the two parallel edges are simply supported, the

fourth-order differential equation governing the motion of such plates of exponentially varying thickness in one direction,

has been solved by using the quintic splines interpolation technique for three different combinations of clamped, simply

supported and free boundary conditions at the other two edges. Effect of the non-homogeneity and elastic foundation

together with other plate parameters such as orthotropy, aspect ratio and thickness variation on the natural frequencies of

vibration is illustrated for the first three modes of vibration. Normalized displacements are presented for specified plates

for all the three boundary conditions.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

In the recent past, there has been a phenomenal increase in the development of fiber-reinforced materials
due to the desirability of lightweight, high strength, corrosion resistance and high-temperature performance
requirements in modern technology. Plates of composite materials are widely used in many engineering
structures and machines. By appropriate variation of plate thickness, these plates have significantly greater
efficiency for vibration as compared to the plates of uniform thickness and also provide the advantage of
reduction in weight and size. Thus, their design requires an accurate determination of their natural frequencies
and mode shapes. An extensive review of the work up to 1985 on linear vibration of isotropic/anisotropic
plates of various geometries has been given by Leissa in his monograph [1] and in a series of review articles
[2–5]. The studies of orthotropic rectangular plates with uniform/non-uniform thickness with various edge
conditions after 1985 has been carried out by a number of researchers and are reported in Refs. [6–15] to
mention the prominent ones.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Non-homogeneous elastic plates find their applications in the design of space vehicles, modern missiles and
aircraft wings [16]. Materials and structural components are often non-homogeneous, either by design or
because of the physical composition and imperfections in the underlying materials. Thus non-homogeneous
materials are of considerable interest to design engineers and have widespread application due to prevalence of
these materials in the field of electronics and aerospace industry. Very few models representing the behavior of
non-homogeneous materials have been reported in the literature. The earliest model was proposed by Bose
[17], where Young’s modulus and density are supposed to vary with radius vector i.e. ðE; rÞ ¼ ðE0; r0Þr: Biswas
[18] in his model considered exponential variations for torsional rigidity m ¼ m0e

�m1z and the material density
r ¼ r0e�m1z, where m0, m1 and r0 are constants. Rao et al. [19] dealing with vibration of non-homogeneous
isotropic thin plates have assumed linear variations for Young’s modulus and density given by E ¼ E0 (1+ax)
and r ¼ r0 (1+bx). In a series of papers, Tomar et al. [20–23] have analyzed the dynamic behavior of non-
homogeneous isotropic plates of variable thickness of different geometries. The non-homogeneity of the plate
material is assumed to arise due to the variations of Young’s modulus and the density exponentially along one
direction as ðE; rÞ ¼ ðE0;r0Þe

bx; where E0, r0 are constants and b is the non-homogeneity parameter. In all the
above studies, Poisson’s ratio is assumed to remain constant. In a recent paper, Lal and Sharma [24] have
analyzed the axisymmetric vibrations of non-homogeneous polar orthotropic annular plates of variable
thickness assuming that Young’s moduli and density of the plate material vary exponentially in the radial
direction in the same manner i.e. ðEr;Ey;rÞ ¼ ðE1;E2;r0Þe

br where b is the non-homogeneity parameter and
E1, E2, r0 are constants. The similar type of variation in both E and r with non-homogeneity parameter b does
not seem to have any justification as has also been pointed out by Rao et al. [19]. Very recently, Gupta et al.
[25,26] have studied the axisymmetric vibrations of non-homogeneous circular plates of quadritically varying
thickness where Young’s modulus and density are assumed to vary exponentially in radial direction i.e.
E ¼ E0e

mx and r ¼ r0e
Zx(m6¼Z). Poisson’s ratio has been assumed to be constant.

In an up-to-date survey of literature, the authors have not come across any study dealing with vibration of
non-homogeneous orthotropic rectangular plates with the exception of Fares and Zenkour [27], which deals
with buckling, and free vibration of non-homogeneous composite laminated plates. Keeping this in view, a
study dealing with transverse vibrations of non-homogeneous orthotropic rectangular plates of exponentially
varying thickness along one direction and resting on a Winkler-type elastic foundation is presented employing
classical plate theory. For non-homogeneity of the plate material it is assumed that Young’s moduli and
density vary exponentially along one direction. The governing differential equation for such plates with two
opposite edges simply supported reduces to fourth-order differential equation with variable coefficients whose
analytical solution is not feasible. Quintic splines interpolation technique has been employed to obtain the
natural frequencies for three different combinations of clamped, simply supported and free boundary
conditions at the other two edges. This method is preferred because a chain of lower-order approximations
may yield a better accuracy than a global higher-order approximation [28] and natural boundary conditions
can be considered easily. The effect of various plate parameters has been studied on the natural frequencies for
the first three modes of vibration. A Huber-type orthotropic material ‘ORTHO1’ has been taken as an
example of rectangular orthotropic material.

The consideration of non-homogeneity, orthotropy, thickness variation, elastic foundation and aspect ratio
leads to a very complex problem involving several parameters. However, with the choice of Lévy approach
and one-dimensional variations in thickness, Young’s moduli and density one can find the approximate
solution of the present problem. This type of orthotropy and non-homogeneity arises during the fiber-
reinforced plastic structures, which use fibers with different moduli along two mutually perpendicular
directions (i.e. along axes) and different strength properties. Further, this type of variation in thickness and
non-homogeneity consideration is of interest since it provides reasonable approximation to linear variation.
Thus, the present study of theoretically investigated vibrational characteristics will be of interest to design
engineers.

2. Mathematical formulation

Consider a rectangular orthotropic plate of length a, width b, thickness h ¼ (x, y), density r, and resting on
a Winkler-type elastic foundation of foundation modulus kf. The plate is referred to a system of rectangular
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Cartesian coordinates (x, y, z). The middle surface being z ¼ 0 and the origin is at one of the corners of the
plate. The x- and y-axis are taken along the principle directions of orthotropy, the axis of z is perpendicular to
the xy-plane. The differential equation governing the free transverse vibration of such plates is given by
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where Dx ¼ E�xh3=12, Dy ¼ E�yh3=12, Dxy ¼ Gxyh3=12, D1 ¼ E�h3=12, H ¼ D1 þ 2Dxy, E� ¼ nyE�x ¼ nxE�y,
ðE�x;E

�
yÞ ¼ ðEx;EyÞ=ð1� nxnyÞ; w(x,y,t) is the transverse deflection, t the time, r the mass density and Ex, Ey,

vx, vy and Gxy are material constants in proper directions defined by an orthotropic stress–strain law.
Let us assume that the thickness of the plate varies in the x-direction only i.e. h ¼ h(x) and the two opposite

edges y ¼ 0 and b are simply supported. For a harmonic solution, the deflection w (Lévy approach) is assumed
to be

wðx; y; tÞ ¼ w̄ðxÞ sin ðppy=bÞeiot, (2)

where p is the positive integer and o the frequency in radians.
Further, for elastically non-homogeneous material, it is assumed that the Young’s moduli Ex, Ey and

density r are the functions of space variable x only and following Leikhnitskii [29], Panc [30], the shear
modulus is Gxy ¼

ffiffiffiffiffiffiffiffiffiffiffi
ExEy

p
=2ð1þ

ffiffiffiffiffiffiffiffiffinxny
p

Þ .
Introducing the non-dimensional variables

X ¼ x=a; Y ¼ y=b; h̄ ¼ h=a; W ¼ w̄=a. (3)

Eq. (1) reduces to
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where l2 ¼ p2a2p2/b2 and primes denote differentiation with respect to X.
For exponential variation in thickness [31,32], i.e., h̄ ¼ h0eaX and following Refs. [20–24] for non-

homogeneity of the plate material in X direction as follows:

Ex ¼ E1e
mX ; Ey ¼ E2emX ; r ¼ r0e

bX , (5)

where h0, r0 are the thickness and density of the plate at X ¼ 0, m the non-homogeneity parameter, a the taper
parameter, b the density parameter and E1, E2 the Young’s moduli in proper directions at X ¼ 0. The type of
non-homogeneity considered here is mainly for illustration. The new present approach shows that how the
non-homogeneity may be theoretically investigated in the study of vibrational behaviors of plate-type
structures.

Eq. (4) now reduces to

A0W iv þ A1W
000 þ A2W 00 þ A3W 0 þ A4W ¼ 0, (6)

where

A0 ¼ 1; A1 ¼ 2ðmþ 3aÞ; A2 ¼ ðmþ 3aÞ2 � 2
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2
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The solution of Eq. (6) together with the boundary conditions at the edges X ¼ 0 and X ¼ 1 constitutes a
well-defined two-point boundary value problem. Owing to the presence of variable coefficients in Eq. (6), its
closed form solution is not possible. Keeping this in view, an approximate solution is obtained by employing
the quintic splines interpolation technique.

3. Solution by quintic splines

According to the spline technique [32], the interval [0, 1] is divided into n equal subintervals DX by means of
points Xi, i ¼ 0, 1, 2,y, n so that nDX ¼ 1. The quintic spline takes the form

W ðX Þ ¼ a0 þ
X4
j¼1

ajðX � X 0Þ
j
þ
Xn�1
i¼0

biðX � X iÞ
5
þ, (7)

where

ðX � X iÞþ ¼
0 if X � X i;

X � X i if X4X i

(

and a0, y, a4, b0, y, bn�1 are (n+5) unknown constants.
Substitution for W(X) and its derivatives into Eq. (6) gives, for satisfaction at the mth node
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For m ¼ 0(1)n, one obtains a set of (n+1) homogenous equations having (n+5) unknowns ai, i ¼ 0(1)4, bj,
j ¼ 0, 1,y, (n�1), which can be represented by the matrix equation

A½ � Bf g ¼ 0f g, (9)

where A is a matrix of order (n+1)� (n+5) and, {B} and {0} are column vectors of order (n+5)� 1.

4. Boundary conditions and frequency equations

The three sets of boundary conditions namely C–C, C–S, C–F have been considered in which the first
symbol represents the condition at the edge X ¼ 0 and second symbol at the edge X ¼ 1 and C, S, F stand for
clamped, simply supported and free edge, respectively. The relations that should be satisfied at clamped,
simply supported and free edges are

W ¼ dW=dX ¼ 0; W ¼ ðd2W=dX 2Þ � ðE�=E�xÞl
2W ¼ 0 and

ðd2W=dX 2Þ � ðE�=E�xÞl
2W ¼

d

dX
Exh

3 d2W

dX 2
� l2nyW

� �� �
� 4l2ð1� nxnyÞGxyh

3
ðdW=dX Þ ¼ 0,

respectively.
Applying the boundary condition C–C to the displacement function given by Eq. (7), one obtains a set of

four homogenous equations in terms of unknown constants ai, i ¼ 0(1)4, bj, j ¼ 0, 1,y, (n�1), which can be
written as

BCC
� �

Bf g ¼ 0f g, (10)

where BCC is a matrix of order 4� (n+5).
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Eq. (10) together with Eq. (9) gives a complete set of (n+5) equations in (n+5) unknowns that can be
denoted as

A

BCC

	 

Bf g ¼ 0f g. (11)

For a non-trivial solution of Eq. (11), the frequency determinant must vanish and hence,

A

BCC

����
���� ¼ 0. (12)

Similarly for C–S and C–F plates, the frequency determinants can be written as

A

BCS

����
���� ¼ 0;

A

BCF

����
���� ¼ 0, (13,14)

respectively.

5. Numerical results and discussion

The frequency equations (12)–(14) provide the values of the frequency parameter O for various values of
plate parameters. In the present work, numerical results have been computed for first three modes of
vibration, for different values of foundation parameter K ¼ 0.00, 0.01, 0.02, non-homogeneity parameter
m ¼ �0.5, �0.3, �0.1, 0.0, 0.1, 0.3, 0.7, 1.0 density parameter b ¼ �0.5, �0.3, �0.1, 0.0, 0.1, 0.3, 0.5, 0.7, 1.0,
taper parameter a ¼ �0.5, �0.3, �0.1, 0.0, 0.1, 0.3, 0.5, and aspect ratio a/b ¼ 0.3, 0.5, 1.0, 1.5, 2.0, for three
boundary conditions C–C, C–S and C–F. This is achieved by writing p ¼ 1 in the frequency equations and
determined the first three values of O. The elastic constants for the plate material are taken as
E1 ¼ 1� 1010MPa, E2 ¼ 5� 109MPa, vx ¼ 0.2, vy ¼ 0.1, given by Biancolini et al. [17] (‘ORTHO1’). The
thickness h0 at the edge X ¼ 0 has been taken as 0.1.

To choose the appropriate interval DX, the computer program developed for the evaluation of frequency
parameter O was run for n ¼ 10(5)50. The numerical values showed a consistent improvement with the
increase in the number of nodes. In all the above computations, n ¼ 40 has been fixed, since further increase in
n does not improve the results except at the fourth decimal place even in the third mode (Fig. 1).

The results are presented in Figs. 2–7. It is observed that the frequencies for a C–S plate are greater than
that for a C–F plate but less than that for a C–C plate for the same set of values of other plate parameters.
Fig. 2(a) shows the behavior of frequency parameter O with the increasing values of non-homogeneity
parameter m for two different values of foundation parameter K ¼ 0.0, 0.02, taper parameter a ¼70.5 and
b ¼ �0.5, a/b ¼ 1.0 for first mode of vibration. It is observed that the frequency parameter O increases with
the increasing values of non-homogeneity parameter m, taper parameter a and foundation parameter K for all
the three plates. The rate of increase of O with m is more pronounced in case of C–C plate as compared to C–S
and C–F plates. This rate decreases with the increase in the value of foundation parameter K for all the three
plates. A similar inference can be drawn from Figs. 2(b) and (c) when the plate is vibrating in the second mode
as well as in the third mode of vibration except that the rate of increase of O with m is much higher as
compared to the first mode.

Fig. 3(a) gives the inference of density parameter b on frequency parameter O for two values of foundation
parameter K ¼ 0.0, 0.02, non-homogeneity parameter m ¼70.5 and a ¼ 0.5, a/b ¼ 1.0 for the first mode of
vibration. It is found that the frequency parameter O decreases with increasing values of density parameter b
for all the three boundary conditions. The rate of decrease of frequency parameter O with b for C–C plate is
higher than that for C–S and C–F plates keeping all other plate parameters fixed. This rate increases with the
increase in the value of foundation parameter K. It also increases with the increase in the number of modes, as
clear from Fig. 3(b) and (c) when the plate is vibrating in the second/third mode of vibration.

Fig. 4(a) shows the graphs of frequency parameter O versus taper parameter a for two different values of
foundation parameter K ¼ 0.0, 0.02, non-homogeneity parameter m ¼70.5, and b ¼ �0.5, a/b ¼ 1.0, for the
first mode of vibration. It is found that the frequency parameter O increases continuously with the increasing
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values of taper parameter a for C–C and C–S plates whatever be the values of other plate parameters.
However, in case of C–F plate the frequency parameter O increases with the increasing value of a in the
absence of foundation i.e. K ¼ 0.0 while in the presence of K the values of frequency parameter first decreases
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slightly and than increases gradually with increasing values of taper parameter a. In particular, for K ¼ 0.02,
b ¼ �0.5, a/b ¼ 1.0, there is a local minima in the vicinity of a ¼ 0.3 for m ¼ �0.5, which shifts towards
a ¼ 0.0 for m ¼ 0.5 i.e. local minima shifts towards the decreasing values of a as plate becomes stiffer and
stiffer towards the edge X ¼ 1. The behavior of frequency parameter O with a in case of second mode of
vibration is shown in Fig. 4(b). It is found that the frequency parameter O increases with the increasing values
of a for all the three boundary conditions whatever be the values of other plate parameters. In case of third
mode of vibration the frequency parameter also increases with the increasing values of a as clear from
Fig. 4(c). The rate of increase is much higher as compared to the second mode for all the three plates.

The effect of aspect ratio a/b on the frequency parameter O for two values of foundation parameter K ¼ 0.0,
0.02, non-homogeneity parameter m ¼70.5 and a ¼ 0.5, b ¼ 0.5, has been shown in Fig. 5(a) for the first
mode of vibration. It is found that the frequency parameter O increases with increasing values of aspect ratio
a/b for all the three plates. The effect of elastic foundation is more pronounced for a/bo1 as compared
to a/b41 for all the three boundary conditions. This effect decreases with the order of boundary conditions
C–F, C–S and C–C. It is also noticed that the frequency parameter O increases more rapidly for a/b41 when m
changes from negative to positive i.e. plate becomes more and more stiff towards the edge X ¼ 1. From
Fig. 5(b) and (c) when the plate is vibrating in second/third mode of vibration it is found that the behavior of
aspect ratio a/b on the frequency parameter O is almost same as that of the first mode except that the rate of
increase of O with a/b increases with the increase in the number of modes for all the three boundary
conditions.

The graphs of frequency parameter O versus foundation parameter K for two values of density parameter
b ¼70.5 and m ¼ 0.5, a ¼ 0.5, a/b ¼ 1.0 have been plotted in Fig. 6(a) when the plate is vibrating in the first
mode of vibration. It is found that the frequency parameter increases with the increasing values of foundation
parameter K for all the three boundary conditions. The rate of increase in frequency parameter O with
foundation parameter K is higher in case of C–F plate as compared to C–S and C–C plates for the same set of
values of other plate parameters. From Fig. 6(b) when the plate is vibrating in the second mode of vibration,
the effect of foundation parameter is found to increase the frequency parameter O, however the rate of
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increase gets reduced to almost half of the first mode for all the three boundary conditions. In case of third
mode, this rate of increase further decreases and becomes nearly half of the second mode as is evident from
Fig. 6(c).

Mode shapes for a square plate i.e. a/b ¼ 1, have been computed for two values of non-homogeneity
parameter m ¼70.5, taper parameter a ¼70.5and b ¼ �0.5, K ¼ 0.02, for all the three boundary
conditions. Normalized displacements are shown in Fig. 7(a)–(c) for the first three modes of vibration. The
nodal lines are seen to shift towards the edge X ¼ 1, as the edge X ¼ 0 increase in thickness and stiffness for all
the three plates. No special change was seen in the pattern of nodal lines by taking different values of b and K

as normalized displacements were differing only at the third or fourth place after decimal for all the three
boundary conditions.

A comparison of results with those available in the literature obtained by other methods has been presented
in Tables 1 and 2. Table 1 shows a comparison of results for homogeneous isotropic plates of uniform
thickness (a ¼ 0.0) with exact solutions [1] and non-uniform thickness (a ¼70.5) with those obtained by
Chebyshev collocation technique [12], Frobènius method [33], differential quadrature method [34], finite
element method [31] and optimized Kantorovich method [31], for two values of aspect ratio a/b ¼ 0.5, 1.0. In
Table 2, the natural frequencies for C–C and C–S plates of uniform thickness have been presented for K ¼ 0.0
Table 1

Comparison of frequency parameter O for isotropic C–C, C–S and C–F plates for v ¼ 0.3

Boundary

condition

Mode/a K ¼ 0.0 K ¼ 0.01

a/b ¼ 0.5 a/b ¼ 1 a/b ¼ 0.5 a/b ¼ 1

�0.5 0.0 0.5 �0.5 0.0 0.5 �0.5 0.0 0.5 �0.5 0.0 0.5

C–C I 18.655 23.820 30.757 22.604 28.950 37.268 22.467 26.219 32.266 25.844 30.953 38.524

18.657a 23.816a 30.759a 22.609a 28.951a 37.276a 22.468a 26.214a 32.268a 25.848a 30.954a 38.532a

– – – – 28.946b –

– 23.816c – – 28.951c –

– 23.820d – – 28.960d –

II 49.539 63.603 81.676 54.005 69.380 89.039 51.100 64.539 82.257 55.440 70.239 89.572

49.499a 63.635a 81.611a 53.577a 69.327a 88.992a 51.061a 64.472a 82.192a 55.412a 70.187a 89.526a

– – – – 69.320b –

– 63.535c – – 69.327c –

C–S I 14.161 17.335 21.260 18.665 23.647 30.128 19.025 20.506 23.316 22.577 26.061 31.623

14.161a 17.332a 21.262a 18.667a 23.646a 30.135a 19.025a 20.503a 23.318a 22.578a 26.060a 31.699a

– – – – 23.646b –

– 17.332c – – 23.646c –

II 41.264 52.150 65.742 46.119 58.688 74.538 43.146 53.288 66.455 47.811 59.702 75.167

41.232a 52.098a 65.700a 46.094a 58.646a 74.510a 43.115a 53.237a 66.414a 47.787a 59.661a 75.151a

– – – – 58.641b –

– 52.097c – – 58.646c –

C–F I 4.999 5.703 6.868 9.575 12.684 17.255 14.297 12.350 11.322 16.456 16.760 19.496

5.002a 5.704a 6.870a 9.812a 12.687a 17.258a 14.296a 12.351a 11.323a 16.458a 16.762a 19.499a

– – – – 12.680b –

– – – – 12.680e –

– – – – 12.830f –

II 20.633 24.949 30.194 26.218 33.064 42.045 24.304 27.248 31.660 29.187 34.831 43.110

20.639a 24.944a 30.192a 26.230a 33.065a 42.057a 24.308a 27.243a 31.658a 29.197a 34.839a 43.121a

aValues from Chebyshev collocation technique [14].
bExact values from Liessa [1].
cValues by Frobénius method [33].
dValues by differential quadrature method [34].
eValues from finite element method [31].
fValues by optimized Kantorovich method [31].



ARTICLE IN PRESS

Table 2

Comparison of frequency parameter O for isotropic C–C and C–S plates for p ¼ 2, and v ¼ 0.3

Mode C–C C–S

Values of a/b Values of a/b

0.5 1.0 0.5 1.0

I 28.9499 54.7312 23.6468 51.6700

28.9508a 54.7431a 23.6464a 51.6742a

28.9508b 54.7430b 23.6463b 51.6742b

II 69.3796 94.5927 58.6880 86.1493

69.3270a 94.5853a 58.6464a 86.1350a

69.3270b 94.5852b 58.6463b 86.1344b

III 129.3675 154.9509 113.4541 141.0035

129.0951a 154.7754a 113.2377a 140.8484a

129.0956b 154.7757b 113.2281b 140.8455b

aValues by Chebyshev technique [14].
bValues taken from Ref. [35].
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and p ¼ 2 obtained by Frobènius method [35]. A close agreement of the results shows the versatility of the
present technique.

6. Conclusion

The effect of non-homogeneity, which is assumed to arise due to the unidirectional variation in Young’s
moduli and density of the plate material on the natural frequencies of rectangular orthotropic plates of
exponentially varying thickness along one direction and resting on a Winkler elastic foundation has been
studied on the basis of classical plate theory. It is observed that frequency parameter O increases with the
increasing values of non-homogeneity parameter m, aspect ratio a/b, foundation parameter K, while it
decreases with increasing values of density parameter b keeping all other plate parameter fixed for all the three
boundary conditions. The behavior of frequency parameter O is found to increase with increasing values of
taper parameter a with and without elastic foundation for all the three plates except in the first mode of C–F
plate. In this case in the presence of elastic foundation (K ¼ 0.02) there is a local minima in the vicinity of
a ¼ 0.3 which shifts towards the decreasing (negative) values of a with increasing values of non-homogeneity
parameter m as well as aspect ratio a/b. Thus a change in the natural frequencies of a plate can be achieved by a
proper choice of various plate parameters considered here, which will be of great practical interest to design
engineers.

Acknowledgments

The authors wish to express their sincere thanks to the learned reviewers for their constructive comments.
D. Lakhlan is grateful to Council of Scientific & Industrial Research India for providing the junior research
fellowship.
References

[1] A.W. Leissa, Vibration of Plates, NASA SP-160, Government Printing Office, Washington, DC, 1969.

[2] A.W. Leissa, Recent research in plate vibrations, 1973–1976: classical theory, Shock and Vibration Digest 9 (10) (1977) 13–24.

[3] A.W. Leissa, Recent research in plate vibrations, 1973–1976: complicating effects, Shock and Vibration Digest 10 (12) (1978) 21–35.

[4] A.W. Leissa, Plate vibration research, 1976–1980: complicating effects, Shock and Vibration Digest 13 (10) (1981) 19–36.

[5] A.W. Leissa, Recent studies in plate vibration, 1981–1985: complicating effects, Shock and Vibration Digest 19 (3) (1987) 10–24.



ARTICLE IN PRESS
R. Lal, Dhanpati / Journal of Sound and Vibration 306 (2007) 203–214214
[6] S.K. Malhotra, N. Ganesan, M.A. Veluswami, Vibration of orthotropic square plates having variable thickness (parabolical

variation), Journal of Sound and Vibration 119 (1) (1987) 184–188.

[7] T. Sakata, T.K. Hosokawa, Vibration of clamped orthotropic plates, Journal of Sound and Vibration 125 (3) (1988) 429–439.

[8] D.J. Gorman, Accurate free vibration analysis of the completely free orthotropic rectangular plate by the method of superposition,

Journal of Sound and Vibration 165 (3) (1993) 409–420.

[9] R. Lal, U.S. Gupta, Reena, Quintic splines in the study of transverse vibrations of non-uniform orthotropic rectangular plates,

Journal of Sound and Vibration 207 (1) (1997) 1–13.

[10] D.V. Bambill, R.E. Rossi, P.A.A. Laura, C.A. Rossit, Vibration of orthotropic rectangular plates of non-uniform thickness and two

adjacent free edges, Journal of Sound and Vibration 215 (3) (1998) 189–194.

[11] D.V. Bambill, C.A. Rossit, P.A.A. Laura, R.E. Rossi, Transverse vibrations of an orthotropic rectangular plate of linearly varying

thickness and with a free edge, Journal of Sound and Vibration 235 (3) (2000) 530–538.

[12] R. Lal, U.S. Gupta, C. Goel, Chebyshev polynomials in the study of transverse vibrations of nonuniform rectangular orthotropic

plates, The Shock and Vibration Digest 33 (2) (2001) 103–112.

[13] S. Hurlebaus, L. Gaul, J.T.-S. Wang, An exact series solution for calculating the eigen frequencies of orthotropic plates with

completely free boundary, Journal of Sound and Vibration 244 (5) (2001) 747–759.

[14] M. Huang, X.Q. Ma, T. Sakiyama, H. Matuda, C. Morita, Free vibration analysis of orthotropic rectangular plates with variable

thickness and general boundary conditions, Journal of Sound and Vibration 288 (4–5) (2005) 931–955.

[15] M.E. Biancolini, C. Brutti, L. Reccia, Approximate solution for free vibration of thin orthotropic rectangular plates, Journal of Sound

and Vibration 288 (1–2) (2005) 321–344.

[16] S. Chakraverty, M. Petyt, Vibration of non-homogeneous plates using two-dimensional orthogonal polynomials as shape functions in

the Rayleigh–Ritz method, Journal of Mechanical Engineering Science 213 (C7) 707–714.

[17] R.K. Bose, Note on forced vibration of a thin non-homogeneous circular plate with central hole, Indian Journal of Physics 41 (1967)

886–890.

[18] S.K. Biswas, Note on the torsional vibration of a finite circular cylinder of non-homogeneous material by a particular type of twist on

one of the plane surface, Indian Journal of Physics 43 (1969) 320–1969.

[19] G.V. Rao, B.P. Rao, I.S. Raju, Vibrations of inhomogeneous thin plates using a high-precision triangular element, Journal of Sound

and Vibration 34 (3) (1974) 444–445.

[20] J.S. Tomar, D.C. Gupta, N.C. Jain, Vibration of non-homogeneous plates of variable thickness, Journal of the Acoustical Society of

America 72 (1982) 851–855.

[21] J.S. Tomar, D.C. Gupta, N.C. Jain, Axisymmetric vibrations of an isotropic non-homogenous circular plate of linearly varying

thickness, Journal of Sound and Vibration 85 (3) (1982) 365–370.

[22] J.S. Tomar, D.C. Gupta, N.C. Jain, Free vibrations of an isotropic non-homogenous infinite plate of linearly varying thickness,

Meccanica, Journal of Italian Association of Theoritical and Applied Mechanics AIMETA 18 (1983) 30–33.

[23] J.S. Tomar, D.C. Gupta, N.C. Jain, Free vibrations of an isotropic non-homogeneous infinite plate of parabolically varying thickness,

Indian Journal of Pure and Applied Mathematics 15 (1984) 211–220.

[24] R. Lal, S. Sharma, Axisymmetric vibration of non-homogeneous polar orthotropic annular plate of variable thickness, Journal of

Sound and Vibration 272 (1–2) (2004) 245–265.

[25] U.S. Gupta, R. Lal, S. Sharma, Vibration analysis of non-homogeneous circular plate of non-linear thickness variation by differential

quadrature method, Journal of Sound and Vibration 298 (4–5) (2006) 892–906.

[26] U.S. Gupta, R. Lal, S. Sharma, Vibration of non-homogeneous circular Mindlin plates with variable thickness, Journal Sound and

Vibration 302 (1–2) (2007) 1–17.

[27] M.E. Fares, A.M. Zenkour, Buckling and free vibration of non-homogeneous composite cross-ply laminated plates with various plate

theories, Composite Structures 44 (1999) 279–287.

[28] W.G. Bickley, Piecewise cubic interpolation and two point boundary problems, The Computer Journal 11 (1968) 206–208.

[29] S.G. Lekhnitskii, Anisotropic Plates, Gorden and Breach, New York, 1968 (Transl. S.W. Tsai, T. Cheron).

[30] V. Panc, Theories of Elastic Plates, Noordhoff International Publishing, Leydon, The Netherlands, 1975.

[31] Sonzogni, S.R. Idelsohn, P.A.A. Laura, V.H. Cortinez, Free vibration of rectangular plates of exponentially varying thickness and

with a free edge, Journal of Sound and Vibration 140 (3) (1990) 513–522.

[32] U.S. Gupta, R. Lal, Transverse vibrations of non-uniform rectangular plates on an elastic foundation, Journal of Sound and Vibration

61 (1) (1978) 127–133.

[33] S.R. Soni, Vibrations of Elastic Plates and Shells of Variable Thickness. PhD Thesis, University of Roorkee, India, 1972.

[34] R.H. Guticrrez, P.A.A. Laura, Vibrations of rectangular plates with linearly varying thickness and non-uniform boundary

conditions, Journal of Sound and Vibration 178 (4) (1994) 563–566.

[35] R.K. Jain, S.R. Soni, Free vibration of rectangular plates of parabolically varying thickness, Indian Journal of Pure and Applied

Mathematics 4 (3) (1973) 267–277.


	Transverse vibrations of non-homogeneous orthotropic rectangular plates of variable thickness: A spline technique
	Introduction
	Mathematical formulation
	Solution by quintic splines
	Boundary conditions and frequency equations
	Numerical results and discussion
	Conclusion
	Acknowledgments
	References


